
Relightable Neural Assets
KRISHNA MULLIA, Adobe Research, USA
FUJUN LUAN, Adobe Research, USA
XIN SUN, Adobe Research, USA
MILOŠ HAŠAN, Adobe Research, USA

A studio scene with a basket of translucent flowers, blue and blonde curly-haired wigs and a lego with subsurface sca�ering.

Ours

Close-ups

Fig. 1. We propose a compact relightable neural 3D asset representation for geometries with complex shading, such as the fiber BCSDF model [Chiang
et al. 2016] for blue and blonde curly-haired wigs that exhibit glossy highlights and strong multiple fiber scattering, and the translucent Burley-Christensen
shader [Christensen 2015] combined with shading graphs in the Lego and flowers. Our results are realistic, even at extreme zoom levels, and closely match
path-tracing references (shown later). Our representation combines explicit geometry (mesh or fibers) with a neural feature grid and an MLP decoder. This
allows for view variation and full relightability, while reducing rendering costs and implementation complexity compared to the original asset representation.
The assets can be integrated into a full renderer for path tracing with fast shading under arbitrary lighting conditions, correctly handling light transport
within and between assets. On the right we show the close-ups of these assets, demonstrating high-fidelity shading such as complex multiple scattering
effects and global illumination.

High-fidelity 3D assets with materials composed of fibers (including hair),
complex layered material shaders, or fine scattering geometry are critical in
high-end realistic rendering applications. Rendering such models is computa-
tionally expensive due to heavy shaders and long scattering paths. Moreover,
implementing the shading and scattering models is non-trivial and has to be
done not only in the 3D content authoring software (which is necessarily
complex), but also in all downstream rendering solutions. For example, web
and mobile viewers for complex 3D assets are desirable, but frequently can-
not support the full shading complexity allowed by the authoring application.
Our goal is to design a neural representation for 3D assets with complex
shading that supports full relightability and full integration into existing
renderers. We provide an end-to-end shading solution at the first intersec-
tion of a ray with the underlying geometry. All shading and scattering is
precomputed and included in the neural asset; no multiple scattering paths
need to be traced, and no complex shading models need to be implemented
to render our assets, beyond a single neural architecture. We combine an

Authors’ addresses: Krishna Mullia, mulliala@adobe.com, Adobe Research, USA; Fujun
Luan, fluan@adobe.com, Adobe Research, USA; Xin Sun, xinsun@adobe.com, Adobe
Research, USA; Miloš Hašan, mihasan@adobe.com, Adobe Research, USA.

MLP decoder with a feature grid. Shading consists of querying a feature
vector, followed by an MLP evaluation producing the final reflectance value.
Our method provides high-fidelity shading, close to the ground-truth Monte
Carlo estimate even at close-up views. We believe our neural assets could be
used in practical renderers, providing significant speed-ups and simplifying
renderer implementations.

CCS Concepts: • Computing methodologies → Ray tracing.

Additional Key Words and Phrases: rendering, raytracing, global illumina-
tion, relightable neural assets

1 INTRODUCTION
High-fidelity 3D assets with materials using complex layered mate-
rial shaders (subsurface scattering, coatings, weathered surfaces),
or composed of fibers (including hair, fur, or detailed fabrics) are
critical in high-end realistic rendering applications. Rendering such
models is computationally expensive due to heavy shaders and
long scattering paths. Moreover, all downstream renderers need to

2 • Mullia, Luan, Sun, and Hašan

implement the exact same shading and scattering models as the
source authoring system to correctly support the 3D asset. This is
non-trivial: for example, web and mobile viewers for 3D assets are
unlikely to support the full set of features of advanced 3D content
authoring software.
Recent progress in neural rendering suggests converting the

3D asset to a suitable neural representation; however, no existing
method provides a sufficient answer. Earlier NeRF representations
[Mildenhall et al. 2020; Müller et al. 2022; Chen et al. 2022] focus
on view synthesis only; these methods typically bake the original
scene lighting into the neural asset, and cannot relight (that is, re-
spond to the illumination of a new scene), which is critical for a
high-fidelity asset representation. The spatial resolution of models
based on volume rendering is limited: thin primitives like fibers
cannot be fully resolved, and close-up views are blurry. However, in
our use case the ground-truth geometry is available, and can be used
as is, letting us focus on the challenging problem of representing
the high-dimensional reflectance accurately.

More recent neural capture methods support relighting [Bi et al.
2020; Sun et al. 2023a; Jin et al. 2023], but this typically works by
fitting analytic reflectance models to the observed views, which
necessarily degrades complex material appearance. There are some
exceptions; the recent work of Zeng et al. [2023] does not have
this analytic BRDF limitation, and produces fully neural relightable
assets of very high quality from real captures, but still has limitations
when representing high-complexity digital 3D assets and does not
focus on integrating the results into full-featured renderers. Neural
materials [Kuznetsov et al. 2021, 2022] are naturally relightable, but
represent standalone materials rather than full assets. We would
like to represent the entire asset with its texturing and material
assignments, rather than just a flat tileable material patch. Adapting
the ideas from the above methods to our asset representation setting
is possible, but requires new approaches.

The key contribution of this paper is a neural representation for
3D assets with complex materials that supports high accuracy (even
at strong zoom levels), full relightability and correct integration in
Monte Carlo path tracers. We keep an explicit geometry, since the
cost and implementation complexity of casting primary and shadow
rays is reasonable and not a core challenge. Our neural model han-
dles all shading and scattering; no multiple-scattering paths need to
be traced, and no complex shaders need to be implemented in the
deployment rendering system. Our neural architecture combines
an MLP (multi-layer perceptron) decoder with a feature grid, which
can be defined using the triplane formulation [Chan et al. 2021]. A
shading operation consists of querying the feature vector from the
grid at the shading position, followed by passing the feature vector,
combined with local information about the geometry intersection,
view and light directions, which then produces the final shading
color.
Our method provides high fidelity shading, close to the ground

truth Monte Carlo estimate even at strong close-up views. More-
over, our assets can be integrated into a full path tracer, interacting
correctly with any other scene elements (objects and lights). The
data generation consists of rendering 400 camera views of the asset
under different random light directions per pixel, which is tractable
even for expensive hair/fur assets. The training on a single NVIDIA

A100 (40𝐺𝐵) GPU takes about 90 minutes, with an asset size of
about 29𝑀𝐵 (30 minutes and 24𝑀𝐵 for small model).

In summary, our contributions are:

• A neural 3D representation for assets with complex shading as a
combination of explicit geometry, neural feature grid and MLP,
allowing for full variation in view and lighting. The representa-
tion achieves higher accuracy and rendering performance than
previous relightable neural representations.

• An efficient data generation and training pipeline specialized for
this representation.

• A full integration of the neural representation into a produc-
tion renderer. The target renderer can display the asset correctly
within a scene consisting of other objects, with full global light
transport, at high performance, and with no need to implement
the complex material models encoded in the asset.

In the following sections, we cover the background, theory, precom-
putation, training and rendering of our relightable neural assets,
demonstrating high-fidelity renderings, including videos in the sup-
plementary materials.

2 RELATED WORK
Ours is a neural relightable rendering method, so we cover neural
rendering broadly, and relightable neural capture specifically. Since
we target both surface shading and fiber shading, we cover classical
techniques in these areas. Additionally, we discuss precomputed
radiance transfer (PRT).

Neural rendering in graphics. Recently, deep learning has demon-
strated success in a wide range of disciplines, including the field
of computer graphics. Neural Radiance Fields (NeRF) [Mildenhall
et al. 2020] and follow-up neural scene representations [Chan et al.
2022; Chen et al. 2022; Yu et al. 2021; Müller et al. 2022] enable
photorealistic novel view synthesis on complex real-world scenes.
However, these neural fields typically do not support relighting,
since the lighting and reflectance are baked in the radiance field.
Earlier work trained multilayer perceptrons (MLPs) for fast global
illumination rendering [Ren et al. 2013, 2015].

Several neural graphics papers targeted specific rendering effects.
Kallweit et al. [2017] enables fast cloud rendering with radiance-
predicting neural networks. Chu and Thuerey [2017] applied CNNs
on efficient fluid simulation. Vicini et al. [2019] learns a shape-
adaptive BSSRDF model that better approximates subsurface scat-
tering. Zhu et al. [2021] presented a neural complex luminaire repre-
sentation that supports the compression, evaluation and importance
sampling of the lightfield based on a simplified geometric proxy.

Ourwork is related to neuralmaterials [Rainer et al. 2019; Kuznetsov
et al. 2021, 2022] in its neural architecture and relighting ability,
but unlike learning the complex material appearance on planar
or curved surfaces, our model is more focused on learning full as-
sets, combining material with geometry. Our approach is similar
to the neural architecture of the recent NeuMIP work [2021; 2022],
which can theoretically fit any material (e.g. a complex synthetic
micro-geometry or measured BTF data) with MLPs.

Relightable Neural Assets • 3

Feature maps

Triplane representation

reshape

512 x 512 x 8 x 3
512 512

Surface rendering

n

p

x vis.

vis.

x position

view dir.

light dir.
n normal

512 512

x

Triplane features

+

sum

MLP

view dir.

light dir.
n normal

color2

512 512

Fiber rendering

d

vis.

vis.

x position

view dir.

light dir.

d tangent

512 512

x

Triplane features

+
sum

MLP

h cross-sec.
fiber o�set

view dir.
light dir.

d tangent

h cross-sec.
fiber o�set

h

Cross section

close-up
view

color1
color2
color1

vis.

vis.

vis.

vis.

x position x position

Fig. 2. Overview of the pipeline. On the left, we illustrate our triplane representation, consisting of XY, XZ and YZ planes each with 8 feature channels and
a default resolution of 512 × 512. The feature vectors queried from the triplane representation are summed and passed into an MLP, along with additional
properties. We show two configuration variants of relightable neural asset pipelines designed for surface rendering (middle) and fiber rendering (right),
respectively. The main difference is that surfaces use a normal input, while fibers use tangent and cross-section offset. Both variants output two colors, one of
which will be picked according to the visibility at render time.

Relightable neural capture. Recent advancements in inverse ren-
dering have significantly leveraged neural representations. Vari-
ous methods, including NeRFactor [Zhang et al. 2021b], Neural
Reflectance Fields [Bi et al. 2020], NeRD [Boss et al. 2021a], and
TensoIR [Jin et al. 2023], utilize an implicit neural density field for
inverse volume rendering, among others [Srinivasan et al. 2021;
Boss et al. 2021b; Kuang et al. 2022; Yao et al. 2022; Wu et al. 2023].
Out of these methods, we compare with Bi et al. [2020], because of
its high quality (partly due to the dark room capture setup) and its
ability to specially handle hair/fur shading.
Alternatively, representing shape via a Signed Distance Field

(SDF) is explored in methods such as PhySG [Zhang et al. 2021a],
IRON [Zhang et al. 2022a], and more [Zhang et al. 2022b; Mao et al.
2023; Bangaru et al. 2022]. Hybrid methods combining neural and
explicit representations with physics-based differentiable rendering
are also emerging [Cai et al. 2022; Sun et al. 2023b; Luan et al.
2021; Munkberg et al. 2022; Hasselgren et al. 2022]. However, these
methods predominantly depend on analytic BRDF models, limiting
their ability to represent and relight complex materials and visual
appearances that do not easily fit these models, such as hair, fur,
translucency, or skin shading graphs. Deferred Neural Lighting [Gao
et al. 2020] inputs proxy geometry and rendered AOVs, employing
a 2D CNN decoder for final rendering details. However, it does not
support full path tracing integration, as evaluating path throughput
for arbitrary positions and ray directions and interleaving path-
tracing with CNN passes is non-trivial. NeMF [Zhang et al. 2023]
uses a microflake-like phase function instead of a surface BRDF
model, but still relies on fitting an analytic parametric material
model, inheriting similar limitations.
NRHints [Zeng et al. 2023] is a recent method that overcomes

the analytical BRDF constraint, enabling high-fidelity relighting of
neural assets from real captured data. However, NRHints involves
expensive training and rendering, and did not study full light trans-
port applied to the resulting assets. Representing digital 3D assets
with complex geometry and/or multiple scattering is possible with
NRHints but less accurate than with our method. In contrast, our

method requires significantly less training time, supports full re-
lightability, and achieves full path-tracing integration into existing
renderers at real-time frame rates. Of course, our method is designed
for representing digital assets while NRHints focuses on capturing
real objects; however, NRHints is still the closest alternative method
to ours, so we provide extensive comparisons to it.

Complex surface and subsurface shading. Translucency, specifi-
cally subsurface scattering (SSS), plays an important role for skin
and many other materials. Various shading techniques study ef-
ficient simulation of SSS effects [Habel et al. 2013; Donner and
Jensen 2006; Jensen et al. 2001; Donner et al. 2008]. Recently, Monte
Carlo random walks [Wrenninge et al. 2017] have been preferred for
translucency in high-end production.We use the Burley-Christensen
method [Christensen 2015] but our approach makes no assumptions
on the method used to compute the effect in training data. Layered
mixture models [Guo et al. 2018; Belcour 2018; Guo et al. 2016] are
capable of faithfully representing complex surface material layering
and coating. Lastly, increasing efforts have been made in develop-
ing shading languages and material definition tools such as Nvidia
MDL, MaterialX, and Adobe Substance. The complexity of materi-
als achievable in a system that allows combining all of these tools
using large shading graphs can become intractable for downstream
deployment of the assets. A neural representation like ours helps
to limit this complexity to the precomputation stage, and produces
assets that are much easier to render downstream.

Hair, fur and fabrics are crucial components in representing real-
istic appearance in our world. Marschner et al. [2003] proposed a
realistic hair reflectance model by representing hair fibers as rough
dielectric cylinders with reflectance, absorption and transmission,
which was later extended by d’Eon et al. [2011] and Khungurn and
Marschner [2017]. Yan et al. [2015] presented an animal fur model
that represents the fiber geometry with a double cylinder. Chiang
et al. [2016] presented a practical fiber shadingmodel for hair and fur
(or other fiber-based materials) that is efficient for production path
tracing. We use this model to precompute our fiber-based assets,
though any similar model could be used. This model is near-field,

4 • Mullia, Luan, Sun, and Hašan

meaning it defines a full BSDF for points on the fiber, allowing
reflectance to vary across the width of the fiber; an important ef-
fect that we fully capture. Dual scattering [2008] accounts for the
multiple fiber scattering effects in human hair with fast global and
local approximations, but requires user intervention in parameter
tweaking and only applies to hair.

Precomputed radiance transfer (PRT). Efficient scene relighting
through PRT has been explored in computer graphics research for
two decades [Sloan et al. 2002; Ramamoorthi 2009], often using
the spherical harmonic basis, but also using other bases such as
wavelets [Ng et al. 2003, 2004], polynomials [Ben-Artzi et al. 2008],
spherical Gaussians [Tsai and Shih 2006; Xu et al. 2013] or neural
basis functions [Xu et al. 2022]. It is important to note that the
motivation behind PRT methods is fundamentally different from our
work. Scenes rendered using PRT are constrained in that they cannot
easily incorporate assets that have not undergone the same PRT
representation. PRT models do not allow querying the lighting in an
arbitrary direction. This lowers the lighting frequencies that can be
represented, but evenmore importantly, the lighting is hard to obtain
in a specific basis when shading a given scene point during path
tracing. This limitation hinders the compatibility of PRT methods
with production Monte Carlo path tracing.

In contrast, our relightable neural assets provide an end-to-end
shading solution, which can be seamlessly integrated into existing
renderers forMonte Carlo path tracing alongwith any other classical
scene elements for global illumination.

3 NEURAL SHADING MODEL
Our goal is to take a complex asset and precompute its light transport
(including its materials and multiple light interactions with itself) in
isolation and compress it using a neural model. Such an asset is fully
relightable with respect to the underlying physical light transport
and can be inserted into other scenes by quickly evaluating the
neural model, for different positions, camera and light directions. No
multiple scattering paths need to be traced, and no complex shading
models need to be implemented to render our assets, beyond a single
neural architecture.

3.1 Relightable Asset Definition
To achieve this, we treat the asset as a scene by itself, lit by some
incoming light distribution. The outgoing radiance 𝐿𝑜 at the shading
position x𝑜 with the viewing direction 𝝎𝑜 is an integral of the light
transport from all positions with all incoming lighting directions

𝐿𝑜 (x𝑜 ,𝝎𝑜) =
∫
x𝑖 ∈A,𝝎𝑖 ∈𝝎

𝐿𝑖 (x𝑖 ,𝝎𝑖)𝑇 (x𝑜 ,𝝎𝑜 , x𝑖 ,𝝎𝑖)dx𝑖d𝝎𝑖 , (1)

where 𝐿𝑖 is the incoming radiance at position x𝑖 with lighting di-
rection 𝝎𝑖 , whose domains are A and 𝛀 respectively. 𝑇 is the light
transport function from {x𝑖 ,𝝎𝑖 } to {x𝑜 ,𝝎𝑜 }, globally depending on
the geometries and materials of the entire scene, and including light
paths of all lengths.

Representing the above transport would still require 8-dimensional
data: each outgoing pair (x𝑜 ,𝝎𝑜) is an integral over all incoming
pairs (x𝑖 ,𝝎𝑖). We make the further approximation of assuming dis-
tant directional light. More precisely, we propose a neural asset T ,

for which the outgoing radiance is computed as:

𝐿𝑜 (x,𝝎𝑜) =
∫
𝝎𝑖 ∈𝛀

𝐿𝑖 (𝝎𝑖)T (x,𝝎𝑜 ,𝝎𝑖)d𝝎𝑖 , (2)

where the shading position x𝑜 is denoted as x for brevity, and T is
defined by integrating out the dependence on x𝑖 , that is,

T (x,𝝎𝑜 ,𝝎𝑖) =
∫
x𝑖 ∈A

𝑇 (x𝑜 ,𝝎𝑜 , x𝑖 ,𝝎𝑖)dx𝑖 . (3)

Equivalently, T (x,𝝎𝑜 ,𝝎𝑖) is the radiance leaving x into direction
𝝎𝑜 when lit by a unit-irradiance directional light from direction 𝝎𝑖 ,
and including all self-occlusions and inter-reflections. This makes
our asset definition similar to a bidirectional texture function (BTF),
but defined on an arbitrary geometry instead of a plane. In other
words, our assets are akin to 3D BTFs defined over explicit geometry.
We show that despite the distant directional light assumption in this
definition, our assets can be used with any illumination including
near-field lighting, much like BTFs.

Our goal is to represent the asset as a combination of the geometry
itself and a neural module capable of evaluating T for a given
shading point x and given lighting and viewing directions. The
similarity of this problem to neural BTF compression also suggests
that the design of neural techniques for compressing BTFs could be
adapted to our asset compression problem, as we will see shortly.

3.2 Neural Shading Architecture
The neural shading architecture is composed of two steps, as shown
in Fig. 2. At a shading point x, we query a feature vector from the
triplane feature grid, 𝜻 (x); this feature vector is simply the sum of
the features bilinearly interpolated from the three orthographically
projected planes (XY, YZ and XZ), similar to Chan et al. [2021].

The shading point x has other properties, such as the normal (for
surface assets), tangent and position along fiber width (for fiber as-
sets). We combine these properties with other available information,
such as the camera direction 𝝎𝑜 , light direction 𝝎𝑖 . We concatenate
all of these properties into a property vector x̃ = x̃(x,𝝎𝑖 ,𝝎𝑜), which
can be thought of as an extended shading point, with all easily
available information from the rendering process added to it. More
detail on the property vector x̃ is given below in subsection 3.3. We
concatenate 𝜻 (x) and x̃ into a final input vector 𝝃 .

In the second step, the transport T (x,𝝎𝑖 ,𝝎𝑜) is evaluated by an
MLP (multilayer perceptron) decoder taking the concatenation of
the feature vector 𝜻 (x̃) and properties x̃ as input and returning two
RGB colors, one of which will be picked according to the visibility
at render time. This design choice is to facilitate the full integration
into production renderers — where BSDF evaluation is often done
before a shadow ray is traced for visibility. We denote the full input
of the MLP as 𝝃 . The Monte Carlo simulation of global transport is
not required any more for runtime evaluation of T , since for any
point on the geometry and any incoming and outgoing directions,
it can be quickly evaluated through a combination of querying the
triplane feature grid and evaluating the MLP.
The neural asset is thus the combination of the geometry, the

feature grid 𝜻 and the MLP weights. Once the feature grid and MLP
are jointly trained, the scene can be efficiently re-rendered with
arbitrary light and camera directions. Importantly, the lighting does

Relightable Neural Assets • 5

not necessarily have to be directional in the final scene where the
asset is used, because the neural asset T is parameterized with the
differential of lighting direction 𝝎𝑖 , similar to other shading models
employed in Monte Carlo path tracing. The lighting direction 𝝎𝑜

points to a sampled location on any light source and can be different
every time T is evaluated, hence the asset can be used with any
lighting that is sampled in a manner similar to traditional Monte
Carlo path tracers.
In this sense, our asset is similar to a BTF [Dana et al. 1999],

acquired or synthesized under distant directional lighting but used
in a final renderer with any lighting (such as area/directional/point
emitters and IBLs). Recent neural material representations like Neu-
MIP [Kuznetsov et al. 2021] are essentially compressed BTFs and
make the same assumptions; they are also similar in combining
feature grid lookups with MLP decoders, though their MLPs take
somewhat different inputs and represent different phenomena on
planar surfaces.

In summary, explicit geometry combined with the trained triplane
grid 𝜻 and the MLP is a relightable asset that can be evaluated for
new camera angles within new illumination conditions.

3.3 Surface Properties
The choice of surface properties x̃ and 𝝃 differs between surface-
based and fiber based assets. We append the surface normal n(x)
for surfaces, and direction (tangent) d(x) for fibers, to the property
vector. This is not strictly required, and the model will learn without
it, but it improves the fitting accuracy. For fibers, we additionally
supply ℎ(x), the offset across the fiber width from the fiber axis,
normalized to [−1, 1], as introduced by Marschner et al. [2003]. This
is critical for the ability of the model to learn spatial variation in
lighting across (typically tiny) fiber width, which is a feature of
near-field fiber shading models [Chiang et al. 2016].

Triplane representation. If complete and high-quality UV coordinates
are available, our method can use a 2D feature texture, but this is
not always feasible. It is challenging to build non-overlapping, low-
distortion and compact texture coordinates, especially for meshes
with complex topology and fiber assemblies. Amore general solution
is to use a triplane representation [Chan et al. 2021]. The world
position at x is a 3𝐷 vector {𝑥,𝑦, 𝑧}, which is converted to three

Triplane representation Feature grids

XZ plane

XY plane

YZ plane

Fig. 3. Visualization of the triplane representation. We show the tri-
plane representation for the subsurface lego asset, visualizing the first
channel of XY, YZ, and XZ planes, respectively.

2𝐷 vectors of {𝑥,𝑦}, {𝑦, 𝑧} and {𝑧, 𝑥}. The neural feature grid 𝜻 is
composed of three 2𝐷 tables for each of them, 𝜻𝑥𝑦 , 𝜻𝑦𝑧 and 𝜻𝑧𝑥 , as
illustrated in Figure 3. Each query outputs an 8-channel vector. By
summing the three output vectors, we obtain the final 8-channel
feature vector 𝜻 (x).

Lighting Visibility for Self-Shadowing. Direct shadowing is an im-
portant effect, easily handled by classical rendering methods, but
difficult to learn for a neural network due to its discontinuous na-
ture. Therefore, we also consider the binary visibility of the light
direction V(x,𝝎𝑖), specifying whether the light ray self-intersects
with the asset. We use this visibility value as a hint to the MLP, but
unlike Zeng et al. [2023] we do not use it as an input, but rather
have the MLP produce two outputs (assuming a visibility value of
true or false) and pick the right value at render time. This solution
provides more practical render integration, as detailed later in Sec.
5. The visibility hint significant improves rendering quality with
noise reduction around the shadowing edges.

4 DATA GENERATION AND TRAINING
In this section, we describe our data generation pipeline and training
details in Sec. 4.1 and Sec. 4.2, respectively.

4.1 Data generation
The training dataset is generated using the Python bindings of
Blender 3.5, with a customized CPU version of the Cycles path tracer.
Surface scenes are modeled as meshes and can use arbitrary shaders
allowed by Blender, including custom shading graphs. For scenes
composed of fibers, the fibers are modeled as curved cylinders and
their material properties are defined using the model of Chiang et al.
[2016], known as Principled Hair BSDF in Blender.
Figure 4 shows our data generation setup along with a visual-

ization of the data generated. To render each image, a perspective
camera is randomly placed on a sphere with a user-defined radius
centered at the asset, with the field of view set such that the asset is
taking most of the view. During data generation, the primary rays
within a pixel are all traced through its center, to compute the outgo-
ing radiance of a single visible point x on the geometry, rather than
an average of a footprint. In other words, we are interested in point
sampling the appearance spatially, rather than pre-integrating it.
Since the primary rays always intersect the same geometry at every
pixel, the “alpha” channel of the RGBA rendered result is binary
and indicates the pixels that contain valid intersections; these pixels
become valid data points for training.

Instead of choosing a single light direction for each image or slice
of the training data, we randomize the light direction for each pixel,
improving the coverage of the space of view/light pairs available in
the dataset. In practice, our path tracer allows lighting to be overrid-
den such that each pixel is rendered with a different light direction
𝝎𝑖 . As a result, each rendered pixel with a valid intersection pro-
vides a separate data point with distinct camera and light directions,
which becomes a training sample. Note that even though we use a
fixed camera per rendered image in the dataset, it is possible to cus-
tomize the data generator to produce a random view direction per
pixel for shading purposes, just like the light direction. However, we
did not find this necessary, and opted for simplicity in keeping the

6 • Mullia, Luan, Sun, and Hašan

(b) Illustration of one training slice

...

(a) Data generation setup

uniform
light sampling

Hemisphere
sampling

(c) Training data and AOVs (2 slices are shown)

camera dir. position normal visibility color

Fig. 4. Data generation of our pipeline. (a) We sample camera views
around the asset (upper hemisphere) and for each training slice (b) the light
directions are randomly sampled for each pixel’s ray hit shading point. In
(c), we visualize two slices of the training data and AOVs obtained from
Blender Cycles path tracer.

original view directions. Even in this case, the camera directions are
slightly different for each pixel since we use a perspective camera,
but not random.
In addition to the output radiance, we also utilize a number of

arbitrary output variables (AOVs) in the shading graph and output
them using Blender’s compositing nodes for the values required
by x̃ and 𝝃 , such as the position x, viewing direction 𝝎𝑜 , lighting
direction 𝝎𝑖 and optionally the lighting visibility V. For an asset
composed of fibers, we also output the fiber direction d and the
offset across the fiber ℎ.
We apply a direct light radiance clamping of value 20.0 and an

indirect light clamping of value 10.0. This scales down very bright
samples and prevents issues when combining very low roughness
and purely directional lighting. Alternatively, we support turning
the directional lights into lights with a small angular radius, which
also has the same effect of restricting the dynamic range. However,
we found that clamping is simpler and works just as well, while
making it easier to get accurate visibility hints. Note that previous
methods [Zeng et al. 2023; Bi et al. 2020] use low dynamic range
images, thus essentially clamping at 1.0.
We render 400 cameras with a resolution of 10242 for a given

asset. For some assets, we restrict the lighting directions and viewing
directions to the top hemisphere, as it may not be useful to learn
bottom hemisphere appearance for certain assets. A typical dataset
for a surface asset is about 17.2𝐺𝐵, while fiber assets increase to
about 18𝐺𝐵. We render 128 to 4096 samples per pixel, depending
on the complexity of the scattering paths for an asset. Although

the rendered data has some remaining noise, it is sufficient as our
training regularizes away the noise. We render the images on a cloud
instance with 96 CPU cores. The data for our assets (with complex
effects like subsurface scattering and hair with long scattering paths)
is generated within 4 to 6 hours. We also render out an additional 40-
view validation dataset with fixed light direction per view, enabling
us to judge the fitting quality on realistic configurations numerically
and visually.

4.2 Training
For each sample point x, the input properties tuple 𝝃 is used to
predict two RGB transport values T in the forward pass of our
neural architecture. We use the L2 error with log(𝑥 + 1) applied to
prediction and ground truth, and backpropagate to update the grid
𝜻 and the MLP decoder weights. The network outputs two RGB
values (with and without visibility) and we apply the loss only to
the output matching the visibility value for the given data point,
ignoring the other output.
During training, one batch consists of one image slice from our

dataset; each batch contains a different number of valid data samples
since every camera can have a different number of valid geometry
intersections. As described in 4.1, the ”alpha” channel of the radi-
ance RGBA data is binary; our dataloader only loads data in each
image slice with ”alpha” of 1.0, pixels with 0.0 alpha are discarded
since they represent ”empty space” with no valid intersections. One
training epoch includes the full 400 batches of data. Our training
is implemented using the PyTorch Lightning framework. We use
a single Nvidia A100 GPU (40 GB memory) and our entire dataset
fits into GPU memory during training, making the training very
efficient.
Our training runs for 100, 000 iterations (250 epochs) using an

Adam optimizer [Kingma and Ba 2014], along with a StepLR learning
rate scheduler using an initial learning rate of 1 ∗ 10−3, reducing it
by half every 50 epochs. With these settings, an average training
run takes around 90 to 120 minutes, and 30 to 40 minutes for our
small model; so it is much faster than data generation. In contrast,
NRHints [Zeng et al. 2023] and Neural Reflectance Fields [Bi et al.
2020] would take roughly a day to train their models on multiple
GPUs (e.g. 4).

Lego Small
Lego

100k20k

20

25

30

35

40k 60k 80k

Validation PSNR
Hair Small
Hair

20

22

24

26

28

30

100k20k 40k 60k 80k

Validation PSNR

Fig. 5. Training convergence plots on translucent lego and blue hair
assets. We show the convergence plots for two versions of our model on a
surface asset (lego) and a fiber asset (blue hair). The Lego Small and Hair
Small are trained with a small variant of our neural model with reduced
MLP size for real-time rendering in path tracer, at the cost of compromising
some accuracy.

Relightable Neural Assets • 7

Blender Cycles Ours Blender Cycles Ours (small model) Ours (small model) Blender Cycles
(4096 spp, 247 s) (16 spp, 34 s) (equal-time, 34 s) (16 spp, 1.7 s on CPU) (16 spp, 0.9 s on GPU) (equal-time, 1 s)

Fig. 6. Path tracer integration on surface-based asset. We integrate surface models into a production path tracer on both CPU and GPU rendering. Our
model significantly simplfies the shader implementation and improves the rendering performance. In contrast, blender path tracing exhibits severe Monte
Carlo noise at equal rendering time budget.

Note that during the initial iterations of training, we apply a blur-
ring kernel on the three feature grids; starting at an initial footprint
of 4 pixels and gradually decaying it down to 1 pixel by 20, 000
iterations (50 epochs); the remaining training keeps this minimum
blur of 1 pixel. This is inspired by NeuMIP [Kuznetsov et al. 2021]
and shows noticeably better results due to spatial low-frequency
data sharing, before optimization moves on high frequency details.

During training, we monitor the average PSNR values on the 40
image slices from the validation data set as shown for the Lego and
Blue Hair assets in Figure 5. The plots show that the models already
converge at around 80, 000 iterations (200 epochs), but we notice
that letting them train another 20, 000 iterations (50 epochs) at the
lowest learning rate helps resolve some more high frequency detail.
We use PyTorch Lightning’s checkpointing system to save out

the three best models in terms of PSNR values on the validation
dataset as well as the last checkpoint. The trained model includes
7.4 million parameters (6.3𝑀 for small model) between the feature
grids and MLP weights, and the total uncompressed size is about
29𝑀𝐵 (25𝑀𝐵 for small model).

5 RENDERING
The relightable neural asset can be integrated within a full-featured
production path tracer. We demonstrate an integration of our asset
in a path tracer that allows for environment (IBL) lighting, local
area lighting, other geometries in the scene, and global illumination
(Figure 1, 6, 7, 11 and 12).

If a ray intersects the geometry, the shading on the neural asset is
computed according to Eq. 2. The original materials are not needed;
the neural asset is fully defined by its geometry, feature triplane and
MLP weights. Anti-aliasing is applied as usual in the renderer, as
our assets encode point-wise rather than pixel-aggregated transport.
A rasterizer integration may be possible as well, but we have not
studied it yet.

Rendering with a point or directional light simply requires a
feature grid query and an MLP evaluation for each hit point. For
other illuminations, Monte Carlo light sampling can be used. Indirect
rays can be traced from our asset as well, currently based on uniform
sampling. Neural importance sampling could be applied in the future,
by adapting some of the methods discussed by Xu et al. [2023].
We combine the light samples and indirect samples using multiple
importance sampling (MIS).

The implementation needs to take care to recreate the same con-
ditions that the asset has been trained in. All vectors need to be
converted to training space (normally equivalent to object space)
since this is what the neural model will assume.

Below, we discuss some subtleties of integrating our neural assets
into a production path tracer that may not be immediately obvious.
Figure 6 and 7 show the correctness of our path tracer integration by
comparing to ground truth renders generated using Blender Cycles.

Visibility hint application. In production renderers, BSDF evaluation
is frequently done before a shadow ray is traced for the shading
point. For example, in frameworks like OptiX and Vulkan raytracing,
BSDF evaluation is normally done in a closest hit shader, while
visibility checking requires a subsequent ray generation shader to
construct the appropriate shadow rays, and the ordering of these
shaders would be very tedious to change. Our model essentially
replaces the BSDF evaluation in the shading pipeline, so the visibility
being unknown at this point is a practical obstacle. To resolve this
efficiently, we designed our MLP to output both values (shadowed
and unshadowed); we simply hold on to the two values on the ray
payload and pick one of these values later on based on the results
of the visibility checking.
If the visibility hint is used as an additional MLP input, such as

in the assets produced by Zeng et al. [2023], we can still use this
approach, though at the cost of double shading cost: we can evaluate

8 • Mullia, Luan, Sun, and Hašan

Blender Cycles Ours Blender Cycles Ours (small model) Blender Cycles
(4096 spp, 1 hour) (16 spp, 74.4 s) (equal-time, 74.6 s) (16 spp, 17.7 s on CPU) (equal-time, 17.7 s)

Fig. 7. Path tracer integration on fiber-based asset. We integrate hair models into a production path tracer on CPU rendering. Our model significantly
simplfies the shader implementation and improves the rendering performance. In contrast, blender path tracing exhibits severe Monte Carlo noise at equal
rendering time budget.

the MLP twice for both cases, put the values on the ray payload and
continue as above.

Correct light transport handling. The neural representation T mod-
els all transport within the asset; multi-bounce Monte Carlo simula-
tion is only required for the transport between different assets. A
shadow ray or a secondary indirect ray should not be occluded by
the asset itself, but still intersects the geometries of other assets to
allow for inter-asset global transport in the scene.

In practice, for both rays (shadow and indirect), self-intersection
is tracked by comparing the instance ID (unique per asset) on the ori-
gin of the ray to the ID on the hit point. If a hit is a self-intersection,
we mark the visibility hint as zero on the ray payload and continue
the ray until it hits the light, or any other asset, or exits the scene.
Note that the visibility hint needs to be applied accordingly on both
the shadow ray and the indirect ray.
This accounts for correct global illumination, ignoring multiple

contributions from the neural asset, which have already been han-
dled in precomputation. Shadow rays need to use closest-hit (rather
than any-hit) queries to implement this logic correctly. Multiple
importance sampling (MIS) can be used to weight the direct and
indirect ray as usual.

6 RESULTS
Our novel relightable neural asset model demonstrates versatility
and precision across a variety of materials and lighting conditions.
We showcase our method on four surface-based and three fiber-
based assets, showing comparisons to a path-traced reference and
baselines from previous work [Zeng et al. 2023; Bi et al. 2020]. The
supplementary video shows animated relighting results, as well as
an integration into an interactive path tracer.

The path-traced reference images are rendered with the Blender
Cycles renderer, while ours are rendered by evaluating the fitted
neural model in PyTorch. This is separate from the full path-tracer in-
tegration shown in Figure 1 and involves a deferred shading pipeline
that uses the Cycles renderer to generate the deep buffers for inputs
to our neural model and a forward pass in PyTorch for model eval-
uation. The buffers are 4 × 4 super-sampled for anti-aliasing. This
PyTorch rendering pipeline serves to validate the correctness of the
fitted neural models.

High quality and small models. In the following results, we show-
case two model sizes using our method: the high-quality and small
models. The only difference between the two models is the size of
the MLP, the high-quality model having 512 neurons in each hidden
layer, while the small model having only 64. The larger MLP size
allows for more network capacity with high-fidelity results close to
ground truth, while the smaller MLP allows for a high-performance
version trading off some quality; even running in real-time on the
GPU for most assets.

6.1 Rendering Performance
All our renderings are done on a Windows 11 workstation with
an AMD Threadripper 3990x 64 core CPU (128 threads), 128GB of
RAM and an Nvidia Quadro RTX A6000 GPU. As mentioned earlier,
the results generated with the PyTorch deferred shading pipeline
are only intended for correctness validation, so we focus on the
rendering performance of our path tracer integration.
Figure 6 and 7 show the performance gained by leveraging our

neural asset representation to encode complex light transport on the
surface of assets, especially with lots of scattering effects in assets
like the Lego and Blonde Hair shown. Our path tracer integration in

Relightable Neural Assets • 9

addition to the CPU-based backend, includes a Vulkan-based GPU
backend support for surface-based assets; so we are able to verify
real-time ray tracing performance on these assets. Both assets are
rendered at a resolution of 1024𝑥1024 for the performance metrics
shown.
The Lego, rendered with a single directional light in Blender

Cycles on the CPU to 4096𝑠𝑝𝑝 takes 247𝑠 . It is to be noted that even
at 4096𝑠𝑝𝑝 , there is still some residual Monte-Carlo noise remaining,
but we use this as reference as our training data for this model was
rendered to the same sample count. Rendering with our model, using
the same scene setup in our CPU-based path tracer to 16𝑠𝑝𝑝 , the
general number of samples needed for anti-aliasing, takes 34𝑠 , which
is over a 7𝑥 performance gain. The performance gain is even more
apparent with our small model, which can render the Lego asset to
16𝑠𝑝𝑝 instantly (with the loss of some quality in scattering); with
the CPU-backend taking an average of 105𝑚𝑠 per sample, and on
the GPU 46𝑚𝑠 , including ray tracing time. We also show the noisy
renders that can be obtained on path-tracing the original non-neural
asset to an equal time in Blender Cycles.
The Blonde Hair asset tells a similar story, but with even larger

performance gains: up to 60𝑥 on the high-quality model, and 200𝑥
with the small model because one of the major benefits of our model
is that it cuts down on ray tracing time by not having to trace any
indirect rays inside the asset for multiple scattering. The loss of some
definition in the highlights is visible in the small model, however,
the overall appearance is preserved. This asset is particularly heavy
containing 41, 164 hair strands, with 8.2 million vertices; hence, the
CPU path tracer needs about 1.1𝑠 per sample. Our GPU backend
does not support curves, so we do not have an estimate of speedup
for fiber-based assets on the GPU.

6.2 Comparison to NRHints on surface assets
Figure 8 shows a comparison of the path-traced reference (left)
to our results (middle, both high-quality and small models) and
NRHints [Zeng et al. 2023] (right).
We show renderings across four distinct surface-based assets:

Subsurface Lego, Jug and Dice, Ten24 Head and Flowers. These
assets have been specifically selected to underscore our model’s
ability to handle intricate light transport scenarios, including phe-
nomena such as translucent subsurface scattering, complex self-
occlusion, and multiple interreflections. One of the assets is from
the NRHints paper (Jug and Dice, top row). The Subsurface Lego
features strong translucent appearance, modified from the original
NeRF Lego scene [Mildenhall et al. 2021]. The Ten24 Head presents
a complex dermis skin shader and layered BSSRDFs and BRDFs. The
Flowers scene shows a combination of translucency and complex
intricate geometry.

Our model faithfully replicates the path-traced reference, confirm-
ing its potential to operate effectively under unfamiliar light/view
conditions. Our relightable neural asset model successfully captures
the soft translucent appearance as well as the high-frequency details
of these surface assets.

The PSNR values achieved by both methods are specified within
each image. Overall, even our real-time model performs better than
Zeng et al. [2023] despite its smaller MLP size, and our high-quality

model is consistently better. Specifically, both on zoomed-out views,
and when zooming in on details, our method achieves better PSNR
values. NRHints has worse depiction of geometric details (Lego
and Flowers) and high frequency texture/shading details (jug/dice
and head). This is despite NRHints using more training images
(1,000) than our results (400), and requiring highlight hints (while
our method only uses shadow/visibility hints). The improvement is
due to several factors: our ground-truth geometry, triplane feature
grid, and per-pixel randomized light directions in training data.

6.3 Comparison to NRHints on fiber assets
In Figure 9, we show a comparison of our method to path traced ref-
erence and NRHints [Zeng et al. 2023] on fiber-based assets (hair and
fur), where the effects of detailed geometry and multiple-scattered
light paths are even more significant than for surface assets. This is
reflected in the corresponding PSNR values, but (in our opinion) it
is even more true perceptually.

Our asset representation is sufficiently versatile to replicatewidely
varying fiber effects. For instance, we showcase two hair models,
Blonde Hair and Brown Hair, with dramatically different material
settings. The Blonde Hair exhibits a much lighter color due to pro-
nounced multiple scattering, while the Brown Hair is characterized
by dominant low-order scattering, accompanied by a distinct sec-
ondary (transmit-reflect-transmit) highlight, an important effect
detailed by Marschner et al. [2003] that our model reproduces with-
out issues.

Even though [Zeng et al. 2023] learns plausible shading cues and
color (for example, the pink highlights in the blonde hair), the results
are blurry due to fine geometric details not being reproducible.
On the other hand, our results reproduce even the fine structured
“glinty” appearance of the fibers. Our PSNR values are consistently
better than NRHints, even for our small model, which uses a much
smaller neural network than NRHints.
Our method not only uses the ground truth fiber geometry, but

also accurately models radiance variation across fiber width; we
believe ours is the first neural 3D representation that captures fiber
shading at this level of accuracy.

6.4 Comparison to Neural Reflectance Fields
In Figure 10, we show a comparisonwithNeural Reflectance Fields [Bi
et al. 2020], which fits views with collocated point lighting.We chose
one surface and one fiber based scene, and compare the methods
with both collocated and non-collocated novel point lighting. In
all cases, our method (both high-quality and small models) clearly
outperforms Bi et al. [2020], as their method approximates the shad-
ing by estimating the parameters of a simple surface BRDF model
(or Kajiya-Kay hair model for the fiber asset). Even with collocated
lighting (first and third row), which matches its lighting assump-
tions, Bi et al. [2020] is not able to recover the same amount of detail
and contrast in the shading as our method.

6.5 Showcase of our relighting results
In addition, we present our model’s capability to relight surface
and fiber assets under varying lighting conditions. As illustrated
in Figure 11, we render a translucent Lego and a basket of flowers,

10 • Mullia, Luan, Sun, and Hašan

PSNR 32.44 28.28 25.48

30.47 29.72 28.58 27.54 21.89 22.56

Reference Ours Ours (small model) NRHints [Zeng et al. 2023]

PSNR 35.83 31.53 27.38

Reference RNA (ours) RNA (ours, real-time) NRHints

32.63 29.74 26.48 24.47 20.05 23.53

PSNR 39.32 37.43 29.99

Reference RNA (ours) RNA (ours, real-time) NRHints

36.37 36.0 32.17 32.26 27.02 26.74

PSNR 28.84 27.97 17.7

Reference RNA (ours) RNA (ours, real-time) NRHints

24.85 23.8 23.91 23.31 13.77 16.0

Fig. 8. Comparisons with NRHints [Zeng et al. 2023] on surface-based assets.We show a comparison with four mesh-based assets under point light
illumination. All of them show effects of long light paths due to subsurface scattering applied to varying degrees. One of the assets is from the NRHints paper
(jug and dice, second row). Overall, even our real-time model performs as well or better than Zeng et al. [2023], and our high-quality model is consistently
better. NRHints has worse depiction of geometric details (lego and flowers) and high frequency texture/shading details (jug/dice and head).

Relightable Neural Assets • 11

PSNR 30.32 29.02 19.98

27.45 26.21 26.03 25.02 18.38 20.6

Reference Ours Ours (small model) NRHints [Zeng et al. 2023]

PSNR 29.69 29.23 20.29

Reference RNA (ours) RNA (ours, real-time) NRHints

24.78 24.18 24.14 23.42 20.55 18.66

PSNR 27.97 25.89 24.32

Reference RNA (ours) RNA (ours, real-time) NRHints

28.05 27.85 27.1 27.02 19.95 25.39

Fig. 9. Comparisons with NRHints [Zeng et al. 2023] on fiber-based assets. Fiber-based assets show even more clearly the advantages of our method.
Even though [Zeng et al. 2023] learns plausible shading cues and color (for example, the pink highlights in the blonde hair), the results are blurry due to fine
geometric details not being reproducible. On the other hand, our results reproduce even the fine structured “glinty” appearance of the fibers, since our method
not only uses the ground truth fiber geometry, but also accurately models radiance variation across fiber width. Moreover, the comparison results are rendered
under point light illumination to align with the capabilities of the NRHints architecture, which is currently designed to support point lights.

12 • Mullia, Luan, Sun, and Hašan

PSNR 43.26 41.22 32.75

37.79 37.53 33.93 32.37 25.17 27.1

Reference Ours Ours (small model) Neural Reflectance Fields [Bi et al. 2020a]

PSNR 43.69 41.71 28.73

Reference RNA (ours) RNA (ours, real-time) Neural Reflectance Fields

37.73 36.33 34.87 32.1 22.39 19.2

PSNR 30.15 28.1 21.43

Reference RNA (ours) RNA (ours, real-time) Neural Reflectance Fields

29.38 27.43 27.67 24.88 18.08 19.57

PSNR 25.32 23.31 13.95

Reference RNA (ours) RNA (ours, real-time) Neural Reflectance Fields

21.19 24.24 20.39 23.7 10.84 8.17

Fig. 10. Comparison with Neural Reflectance Fields [Bi et al. 2020], which fits views with collocated point lighting. We compare the methods with both
collocated and non-collocated novel point lighting. In both cases, our method (both high-quality and real-time models) clearly outperforms Bi et al. [2020],
as their method approximates the shading by estimating the parameters of a simple surface BRDF model (or Kajiya-Kay hair model for fibers). Even with
collocated lighting (first and third row), Bi et al. [2020] is not able to recover the same amount of detail and contrast in the shading as our method.

Relightable Neural Assets • 13

Lake Office Hallway City Plaza Above the Clouds

Fig. 11. IBL relighting results on surface assets. We render our model under four different IBL environments with shadow-catching ground plane on
surface assets, namely the translucent lego and a basket of flowers, both featuring subsurface scattering. The lighting conditions vary from sharp outdoor
sunlight to indoor office light, demonstrating our model’s ability to faithfully react to the illuminations for relighting.

Su
ns
et

St
ud

io
Li
gh

t

Fig. 12. IBL relighting results on fiber assets. Our model is rendered under precise IBL lighting environments, including sunlight and studio light, using four
different hair assets with complex scattering effects. It successfully captures the texture of specular glinty highlights and the soft diffusion-like characteristics
due to multiple fiber interactions, maintaining the lifelike appearance of individual hair strands and photorealism of the hair appearance, demonstrating
reasonable visual accuracy while responding to various illuminations.

14 • Mullia, Luan, Sun, and Hašan

both with subsurface scagttering, under four distinct IBL illumi-
nations, each with a shadow-casting ground plane. The selected
IBL environments—Lake, Office Hallway, City Plaza, and Above the
Clouds—encompass a diverse array of lighting scenarios, both indoor
and outdoor. Our relightable neural assets consistently demonstrate
the visual transformation of a single asset under varied illumina-
tions but also emphasize the rich detail and photorealism that can
be achieved, highlighting the intricate subtleties of light interaction
with complex illumination and materials.

In Figure 12, we further demonstrate our model’s relighting capa-
bility on fiber assets. Four distinct hair models are each illuminated
by an outdoor IBL (Sunset) and an indoor IBL (Studio Light). Our
model is capable of accommodating novel perspectives while accu-
rately responding to illumination changes with a complex interplay
of highlights, textures, self-shadowing and multiple fiber scatter-
ing. We believe no neural rendering methods for full 3D assets
have shown comparably powerful relighting ability under arbitrary
views.

6.6 Near-field Rendering
As described in Section 3, our model is trained under the assumption
of distant lighting. In figure 13, we analyze the effect of this assump-
tion on near-field lighting with the use of a point light placed at
three different distances from the neural asset. We observe that on
moving the point light from a relatively far distance of 8.66 closer
to 1.73, our model’s accuracy holds up particularly well as shown
by very similar PSNR values in both the full render and crops. Even
when the light is moved right next to the asset at a distance of 0.86,
the overall appearance is preserved, but the close-up crops show
some reduction in quality. This shows that for most practical appli-
cations, the distant light assumption does not cause our method to
break down on using local lighting. We would also like to also note
that all the comparisons to baselines were performed with point
lights showing further evidence of near-field rendering quality.

6.7 Ablations
6.7.1 Using ℎ. In Figure 14, we show a close-up zoom at a small
part of a hair assembly. Our model computes point-wise outgoing
radiance at every fiber intersection. This lets us render fairly ex-
treme close-ups that remain detailed and realistic, instead of blurring
(which would have been the case for volumetric or mesh approxi-
mations to the fiber geometry). Note the variation in color across
the width of a fiber (middle), a correctly captured feature of the
near-field hair BSDF model used, matching the reference (right).
However, this requires using the fiber cross-section positionℎ as one
of the MLP inputs. Without ℎ, the model cannot learn the variation
(left).

6.7.2 Network Architecture. We chose MLP and triplane configu-
rations methodically. Table 1 shows the various MLP architectures
we tested, along with their training time and average PSNR values
on the validation data for the Lego asset that has heavy scattering
properties in its shading model. It is clear that increasing the net-
work capacity improved the quality of the model, and took longer
to train; the training time being a rough estimate of the model’s
inference performance. Of note, for the Lego asset, models with 16

and 32 hidden layer neurons were not able to capture the scattering
effects in most regions and 64 was the fastest acceptable one. We
chose 64 neurons as the size for the small model as it worked well
with all our assets, and was also a size that generally fits on register
allocations of GPU production path tracing shaders. The take-away
though is that there is a quality vs. performance trade-off that can
be made for any particular use case.
Table 2 shows the effect of using feature grids with increasing

channel counts on our high-quality model. Increasing the number
of channels increases the number of inputs to the MLP and thus has
an adverse effect on performance as indicated by training time. The
PSNR values show that 8 channels is sufficient for good model qual-
ity, and though there is a slight benefit in going up to 16 channels,
anything higher doesn’t provide additional gains.

6.7.3 Visibility. We compare the rendering result of our model with
and without the lighting visibility hint. As shown in Figure 15, our
model improves the rendering quality around shadowing edges with
faithful shadows when we provide visibility hints to the MLP. This
is because direct shadowing is typically high frequency signals (e.g.
hard edge boundaries), which is difficult for MLP to represent well
without aiding such hints.

6.7.4 Triplane vs. UV parameterization. As shown in Figure 16,
triplane representation provides sufficient texture details at 512×512.
On the other hand, UV parameterization at 512 × 512 resolution
results in blurred details, becoming sharper only at 1024 × 1024. On

Table 1. Ablation on the MLP architecture.We evaluate different config-
urations of the MLP, including the number of hidden layers and the number
of neurons in each layer. We show the average PSNRs on the Lego asset,
along with the runtime for training to give a sense of model performance.
All models here use 8 channels for the feature grids. Our chosen architecture
for offline model is in bold, and small model is in italics.

Hidden Layers Neurons Training Runtime PSNR
4 16 34m 58s 27.47
4 32 35m 11s 27.36
4 64 31m 17s 28.77
4 128 39m 27s 31.02
4 256 50m 51s 32.68
2 512 55m 51s 33.07
3 512 1h 5m 33.80
4 512 1h 13m 34.09
5 512 1h 25m 34.20
4 1024 2h 44m 34.90

Table 2. Ablation on Feature Grid Channels. We evaluate use of different
feature grid channels on the Lego asset with our high-quality model that
has 4 hidden layers with 512 neurons each.

Channels Training Runtime PSNR
4 1h 11m 33.51
8 1h 13m 34.09
16 1h 20m 34.40
32 1h 37m 34.33

Relightable Neural Assets • 15

PSNR 29.36 27.59

Point Light at (5, 5, 5), Intensity 4000W
Reference RNA (ours) RNA (ours, small)

29.27 28.71 26.3 27.56

PSNR 30.1 28.51

Point Light at (1, 1, 1), Intensity 100W
Reference RNA (ours) RNA (ours, small)

28.94 28.24 26.44 27.29

PSNR 30.75 29.39

Point Light at (0.5, 0.5, 0.5), Intensity 10W
Reference RNA (ours) RNA (ours, small)

24.66 25.83 22.86 24.59

Fig. 13. Near-field lighting limitation. We show the rendering of our white fur asset with a point light at distances that are far, close and very close to the
asset to illustrate to what extent our distant lighting assumption causes error in near-field lighting.

16 • Mullia, Luan, Sun, and Hašan

Ours (w/ ℎ) Ours (w/o ℎ) Reference

Fig. 14. A close-up of a small part of a blonde hair assembly. Our
approach can render fairly extreme close-ups that remain detailed and
realistic, instead of blurring; however, this requires using the fiber cross-
section position ℎ as one of the MLP inputs. Left: without ℎ, the model
cannot learn the variation. Middle: the variation across the width of a fiber
is captured as well as in the reference (right).

Ours (w/ vis. hint) Vis. hint Ours (w/o vis. hint)

Fig. 15. Lighting visibility for self-shadowing.We use visibility value
as a hint to the MLP, which significantly improves the rendering quality
around shadowing edges.

the other hand, UV mapping is not always feasible when the mesh
topology is complex (or fibers) while triplane representation does
not have such limitation.

6.8 Discussion and limitations
In summary, these results affirm ourmodel’s robustness inmanaging
diverse lighting conditions and viewpoints, as well as its precision
in modeling an array of surface types and complex light transport
phenomena. We believe our approach has broad applicability, com-
bined with its high performance, positions is as potentially broadly
applicable in practice.
Several limitations exist and we would like to address them in

future work. One limitation of our current path-tracer integration is
that we use simple uniform sampling as an approximation, similar
to NeuMIP [Kuznetsov et al. 2021]. A more advanced importance
sampling module could be trained, similar to Xu et al. [2023] or
Zeltner et al. [2023]. These approaches would require a new sam-
pling neural network, but could reuse the same feature grid from
our method.
Furthermore, while our method supports specular objects (e.g.

the skin material is fairly specular), very low roughness (close to
mirror or glass) materials will show blurring in our fits. Our assets
are currently static; animated assets would be an interesting future
challenge, and could be supported through mapping shading queries
into a canonical pose and training over different poses ins addition to
camera and light directions. Furthermore, while primary ray-tracing

of the explicit geometry is cheaper than full light transport, it may
still be expensive for some applications; this could be addressed by
an approximate proxy geometry.

7 CONCLUSION
In this paper, we introduced a precomputed relightable neural model
for representing synthetic surface-based or fiber-based 3D assets
with complex materials. Our model allows full view and lighting
variation; in comparison with relightable neural capture approaches,
we achieve higher accuracy, though our method is specifically de-
signed for representing digital assets, not for capture from real
photographs. Our design enables any viewing or illumination condi-
tions and allows for integration of our assets in full scenes, rendered
in a production path tracer. Our neural model handles all shad-
ing, inter-reflections, and scattering. The benefits of our approach
include increased shading performance, as well as as ability to rep-
resent complex material models and shading graphs, which do not
need to be implemented in the target rendering system.

REFERENCES
Sai Praveen Bangaru, Michaël Gharbi, Tzu-Mao Li, Fujun Luan, Kalyan Sunkavalli,

Milos Hasan, Sai Bi, Zexiang Xu, Gilbert Bernstein, and Fredo Durand. 2022. Differ-
entiable rendering of neural sdfs through reparameterization. In SIGGRAPH Asia
2022 Conference Papers. 1–9.

Laurent Belcour. 2018. Efficient rendering of layered materials using an atomic de-
composition with statistical operators. ACM Transactions on Graphics 37, 4 (2018),
1.

Aner Ben-Artzi, Kevin Egan, Frédo Durand, and Ravi Ramamoorthi. 2008. A Pre-
computed Polynomial Representation for Interactive BRDF Editing with Global
Illumination. ACM Trans. Graph. 27, 2, Article 13 (may 2008), 13 pages. https:
//doi.org/10.1145/1356682.1356686

Sai Bi, Zexiang Xu, Pratul P. Srinivasan, BenMildenhall, Kalyan Sunkavalli, Milos Hasan,
Yannick Hold-Geoffroy, David J. Kriegman, and Ravi Ramamoorthi. 2020. Neural Re-
flectance Fields for Appearance Acquisition. abs/2008.03824 (2020). arXiv:2008.03824
https://arxiv.org/abs/2008.03824

Mark Boss, Raphael Braun, Varun Jampani, Jonathan T Barron, Ce Liu, and Hendrik
Lensch. 2021a. Nerd: Neural reflectance decomposition from image collections. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 12684–
12694.

Mark Boss, Varun Jampani, Raphael Braun, Ce Liu, Jonathan Barron, and Hendrik
Lensch. 2021b. Neural-pil: Neural pre-integrated lighting for reflectance decomposi-
tion. Advances in Neural Information Processing Systems 34 (2021), 10691–10704.

Guangyan Cai, Kai Yan, Zhao Dong, Ioannis Gkioulekas, and Shuang Zhao. 2022.
Physics-based inverse rendering using combined implicit and explicit geometries.
In Computer Graphics Forum, Vol. 41. Wiley Online Library, 129–138.

Eric R Chan, Connor Z Lin,MatthewAChan, Koki Nagano, Boxiao Pan, Shalini DeMello,
Orazio Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. 2022.
Efficient geometry-aware 3D generative adversarial networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 16123–16133.

Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De
Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. 2021. Efficient Geometry-aware 3D Generative
Adversarial Networks. In arXiv.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. TensoRF:
Tensorial Radiance Fields. arXiv preprint arXiv:2203.09517 (2022).

Matt Jen-Yuan Chiang, Benedikt Bitterli, Chuck Tappan, and Brent Burley. 2016. A Prac-
tical and Controllable Hair and Fur Model for Production Path Tracing. Computer
Graphics Forum (2016). https://doi.org/10.1111/cgf.12830

Per H Christensen. 2015. An approximate reflectance profile for efficient subsurface
scattering. In ACM SIGGRAPH 2015 Talks. 1–1.

Mengyu Chu and Nils Thuerey. 2017. Data-driven synthesis of smoke flows with
CNN-based feature descriptors. ACM Transactions on Graphics (TOG) 36, 4 (2017),
1–14.

Kristin J. Dana, Bram van Ginneken, Shree K. Nayar, and Jan J. Koenderink. 1999.
Reflectance and Texture of Real-World Surfaces. ACM Trans. Graph. 18, 1 (jan 1999),
1–34. https://doi.org/10.1145/300776.300778

Eugene d’Eon, Guillaume Francois, Martin Hill, Joe Letteri, and Jean-Marie Aubry. 2011.
An energy-conserving hair reflectance model. In Computer Graphics Forum, Vol. 30.
Wiley Online Library, 1181–1187.

https://doi.org/10.1145/1356682.1356686
https://doi.org/10.1145/1356682.1356686
https://arxiv.org/abs/2008.03824
https://arxiv.org/abs/2008.03824
https://doi.org/10.1111/cgf.12830
https://doi.org/10.1145/300776.300778

Relightable Neural Assets • 17

Reference Triplane parameterization (ours) UV parameterization (512 x 512) UV parameterization (1024 x 1024)

XY plane (ours) XZ plane (ours) YZ plane (ours) UV parameterization (512 x 512) UV parameterization (1024 x 1024)

Fig. 16. Ablation on the triplane vs. UV parameterization.We examine triplane and UV parameterization on the head asset. UV parameterization at
512 × 512 resolution results in blurred details, becoming sharper only at 1024 × 1024. Conversely, the triplane representation provides satisfactory detail at
512 × 512. The color map is the same as in Fig. 3, visualizing the first channel of features.

Craig Donner and Henrik Wann Jensen. 2006. A Spectral BSSRDF for Shading Human
Skin. Rendering techniques 2006 (2006), 409–418.

Craig Donner, Tim Weyrich, Eugene d’Eon, Ravi Ramamoorthi, and Szymon
Rusinkiewicz. 2008. A layered, heterogeneous reflectance model for acquiring
and rendering human skin. ACM transactions on graphics (TOG) 27, 5 (2008), 1–12.

Duan Gao, Guojun Chen, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. 2020. Deferred
neural lighting: free-viewpoint relighting from unstructured photographs. ACM
Transactions on Graphics (TOG) 39, 6 (2020), 1–15.

Jie Guo, Jinghui Qian, Yanwen Guo, and Jingui Pan. 2016. Rendering thin transparent
layerswith extended normal distribution functions. IEEE transactions on visualization
and computer graphics 23, 9 (2016), 2108–2119.

Yu Guo, Miloš Hašan, and Shuang Zhao. 2018. Position-free Monte Carlo simulation
for arbitrary layered BSDFs. ACM Transactions on Graphics (ToG) 37, 6 (2018), 1–14.

Ralf Habel, Per H Christensen, and Wojciech Jarosz. 2013. Photon beam diffusion: A
hybrid monte carlo method for subsurface scattering. In Computer Graphics Forum,
Vol. 32. Wiley Online Library, 27–37.

Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg. 2022. Shape, light, and material
decomposition from images using Monte Carlo rendering and denoising. Advances
in Neural Information Processing Systems 35 (2022), 22856–22869.

Henrik Wann Jensen, Stephen R Marschner, Marc Levoy, and Pat Hanrahan. 2001. A
practical model for subsurface light transport. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques. 511–518.

Haian Jin, Isabella Liu, Peijia Xu, Xiaoshuai Zhang, Songfang Han, Sai Bi, Xiaowei
Zhou, Zexiang Xu, and Hao Su. 2023. TensoIR: Tensorial Inverse Rendering.
arXiv:2304.12461

Simon Kallweit, Thomas Müller, Brian Mcwilliams, Markus Gross, and Jan Novák. 2017.
Deep scattering: Rendering atmospheric clouds with radiance-predicting neural
networks. ACM Transactions on Graphics (TOG) 36, 6 (2017), 1–11.

Pramook Khungurn and Steve Marschner. 2017. Azimuthal scattering from elliptical
hair fibers. ACM Transactions on Graphics (TOG) 36, 2 (2017), 1–23.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Zhengfei Kuang, Kyle Olszewski, Menglei Chai, Zeng Huang, Panos Achlioptas, and
Sergey Tulyakov. 2022. Neroic: Neural rendering of objects from online image

collections. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–12.
Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Miloš Hašan, and Ravi Ramamoor-

thi. 2021. NeuMIP: Multi-Resolution Neural Materials. Transactions on Graphics
(Proceedings of SIGGRAPH) 40, 4, Article 175 (July 2021), 13 pages.

Alexandr Kuznetsov, Xuezheng Wang, Krishna Mullia, Fujun Luan, Zexiang Xu, Miloš
Hašan, and Ravi Ramamoorthi. 2022. RenderingNeuralMaterials on Curved Surfaces.
In ACM SIGGRAPH 2022 Conference Proceedings. 1–9.

Fujun Luan, Shuang Zhao, Kavita Bala, and Zhao Dong. 2021. Unified shape and svbrdf
recovery using differentiable monte carlo rendering. In Computer Graphics Forum,
Vol. 40. Wiley Online Library, 101–113.

Shi Mao, Chenming Wu, Zhelun Shen, and Liangjun Zhang. 2023. NeuS-PIR: Learn-
ing Relightable Neural Surface using Pre-Integrated Rendering. arXiv preprint
arXiv:2306.07632 (2023).

Stephen R Marschner, Henrik Wann Jensen, Mike Cammarano, Steve Worley, and Pat
Hanrahan. 2003. Light scattering from human hair fibers. ACM Transactions on
Graphics (TOG) 22, 3 (2003), 780–791.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis. In ECCV.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance fields
for view synthesis. Commun. ACM 65, 1 (2021), 99–106.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
neural graphics primitives with a multiresolution hash encoding. arXiv preprint
arXiv:2201.05989 (2022).

Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex
Evans, Thomas Müller, and Sanja Fidler. 2022. Extracting triangular 3d models,
materials, and lighting from images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 8280–8290.

Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. 2003. All-Frequency Shadows Using
Non-Linear Wavelet Lighting Approximation. ACM Trans. Graph. 22, 3 (jul 2003),
376–381. https://doi.org/10.1145/882262.882280

Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. 2004. Triple Product Wavelet Integrals
for All-Frequency Relighting. ACM Trans. Graph. 23, 3 (aug 2004), 477–487. https:

https://arxiv.org/abs/2304.12461
https://doi.org/10.1145/882262.882280
https://doi.org/10.1145/1015706.1015749
https://doi.org/10.1145/1015706.1015749

18 • Mullia, Luan, Sun, and Hašan

//doi.org/10.1145/1015706.1015749
Gilles Rainer, Wenzel Jakob, Abhijeet Ghosh, and Tim Weyrich. 2019. Neural BTF Com-

pression and Interpolation. Computer Graphics Forum (Proceedings of Eurographics)
38, 2 (March 2019).

Ravi Ramamoorthi. 2009. Precomputation-Based Rendering. NOW Publishers Inc.
http://graphics.cs.berkeley.edu/papers/Ramamoorthi-PBR-2009-04/

Peiran Ren, Yue Dong, Stephen Lin, Xin Tong, and Baining Guo. 2015. Image based
relighting using neural networks. ACM Transactions on Graphics (ToG) 34, 4 (2015),
1–12.

Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo.
2013. Global illumination with radiance regression functions. ACM Trans. Graph.
32, 4 (2013), 130–1.

Peter-Pike Sloan, Jan Kautz, and John Snyder. 2002. Precomputed Radiance Transfer for
Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments. ACM
Trans. Graph. 21, 3 (jul 2002), 527–536. https://doi.org/10.1145/566654.566612

Pratul P Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall,
and Jonathan T Barron. 2021. Nerv: Neural reflectance and visibility fields for
relighting and view synthesis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 7495–7504.

Cheng Sun, Guangyan Cai, Zhengqin Li, Kai Yan, Cheng Zhang, Carl Marshall, Jia-Bin
Huang, Shuang Zhao, and Zhao Dong. 2023a. Neural-PBIR Reconstruction of Shape,
Material, and Illumination. arXiv:2304.13445 [cs.CV]

Cheng Sun, Guangyan Cai, Zhengqin Li, Kai Yan, Cheng Zhang, Carl Marshall, Jia-Bin
Huang, Shuang Zhao, and Zhao Dong. 2023b. Neural-PBIR Reconstruction of Shape,
Material, and Illumination. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 18046–18056.

Yu-Ting Tsai and Zen-Chung Shih. 2006. All-frequency precomputed radiance transfer
using spherical radial basis functions and clustered tensor approximation. ACM
Transactions on graphics (TOG) 25, 3 (2006), 967–976.

Delio Vicini, Vladlen Koltun, and Wenzel Jakob. 2019. A learned shape-adaptive sub-
surface scattering model. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–15.

Magnus Wrenninge, Ryusuke Villemin, and Christophe Hery. 2017. Path traced subsur-
face scattering using anisotropic phase functions and non-exponential free flights.
In Tech. Rep. Pixar Inc.

Haoqian Wu, Zhipeng Hu, Lincheng Li, Yongqiang Zhang, Changjie Fan, and Xin Yu.
2023. NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 4295–4304.

Bing Xu, Liwen Wu, Milos Hasan, Fujun Luan, Iliyan Georgiev, Zexiang Xu, and Ravi
Ramamoorthi. 2023. NeuSample: Importance Sampling for Neural Materials. In
ACM SIGGRAPH 2023 Conference Proceedings (SIGGRAPH ’23). Article 41, 10 pages.

Kun Xu, Wei-Lun Sun, Zhao Dong, Dan-Yong Zhao, Run-Dong Wu, and Shi-Min Hu.
2013. Anisotropic spherical gaussians. ACM Transactions on Graphics (TOG) 32, 6
(2013), 1–11.

Zilin Xu, Zheng Zeng, Lifan Wu, Lu Wang, and Ling-Qi Yan. 2022. Lightweight Neural
Basis Functions for All-Frequency Shading. In SIGGRAPH Asia 2022 Conference
Papers. 1–9.

Ling-Qi Yan, Chi-Wei Tseng, Henrik Wann Jensen, and Ravi Ramamoorthi. 2015.
Physically-accurate fur reflectance: Modeling, measurement and rendering. ACM
Transactions on Graphics (TOG) 34, 6 (2015), 1–13.

Yao Yao, Jingyang Zhang, Jingbo Liu, Yihang Qu, Tian Fang, David McKinnon, Yanghai
Tsin, and Long Quan. 2022. Neilf: Neural incident light field for physically-based
material estimation. In European Conference on Computer Vision. Springer, 700–716.

Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. 2021. Plenoxels: Radiance fields without neural networks. arXiv
preprint arXiv:2112.05131 (2021).

Tizian Zeltner, Fabrice Rousselle, AndreaWeidlich, Petrik Clarberg, Jan Novák, Benedikt
Bitterli, Alex Evans, Tomáš Davidovič, Simon Kallweit, and Aaron Lefohn. 2023.
Real-Time Neural Appearance Models. arXiv preprint arXiv:2305.02678 (2023).

Chong Zeng, Guojun Chen, Yue Dong, Pieter Peers, Hongzhi Wu, and Xin Tong. 2023.
Relighting Neural Radiance Fields with Shadow and Highlight Hints. In ACM SIG-
GRAPH 2023 Conference Proceedings. 1–11.

Kai Zhang, Fujun Luan, Zhengqi Li, and Noah Snavely. 2022a. Iron: Inverse rendering
by optimizing neural sdfs and materials from photometric images. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5565–5574.

Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and Noah Snavely. 2021a. Physg:
Inverse rendering with spherical gaussians for physics-based material editing and
relighting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 5453–5462.

Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T Free-
man, and Jonathan T Barron. 2021b. Nerfactor: Neural factorization of shape and
reflectance under an unknown illumination. ACM Transactions on Graphics (ToG)
40, 6 (2021), 1–18.

Yuanqing Zhang, Jiaming Sun, Xingyi He, Huan Fu, Rongfei Jia, and Xiaowei Zhou.
2022b. Modeling indirect illumination for inverse rendering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 18643–18652.

Youjia Zhang, Teng Xu, Junqing Yu, Yuteng Ye, Yanqing Jing, Junle Wang, Jingyi Yu,
and Wei Yang. 2023. Nemf: Inverse volume rendering with neural microflake field.
In Proceedings of the IEEE/CVF International Conference on Computer Vision. 22919–
22929.

Junqiu Zhu, Yaoyi Bai, Zilin Xu, Steve Bako, Edgar Velázquez-Armendáriz, Lu Wang,
Pradeep Sen, Miloš Hašan, and Ling-Qi Yan. 2021. Neural complex luminaires:
representation and rendering. ACM Transactions on Graphics (TOG) 40, 4 (2021),
1–12.

Arno Zinke, Cem Yuksel, Andreas Weber, and John Keyser. 2008. Dual scattering
approximation for fast multiple scattering in hair. In ACM SIGGRAPH 2008 papers.
1–10.

https://doi.org/10.1145/1015706.1015749
http://graphics.cs.berkeley.edu/papers/Ramamoorthi-PBR-2009-04/
https://doi.org/10.1145/566654.566612
https://arxiv.org/abs/2304.13445

	Abstract
	1 Introduction
	2 Related Work
	3 Neural Shading Model
	3.1 Relightable Asset Definition
	3.2 Neural Shading Architecture
	3.3 Surface Properties

	4 Data Generation and Training
	4.1 Data generation
	4.2 Training

	5 Rendering
	6 Results
	6.1 Rendering Performance
	6.2 Comparison to NRHints on surface assets
	6.3 Comparison to NRHints on fiber assets
	6.4 Comparison to Neural Reflectance Fields
	6.5 Showcase of our relighting results
	6.6 Near-field Rendering
	6.7 Ablations
	6.8 Discussion and limitations

	7 Conclusion
	References

